Archive for the ‘adult stem cells’ Category

Hallmarks of Aging – Why Cell Health Is Everything

Saturday, September 21st, 2013

Spanish Scientists conducted a review and their scientific findings were recently released in a pub med paper.  They found there are nine predominant hallmarks of aging.

Of significant relevance, is this scientific research shows almost all the hallmarks of aging have an association at the cellular level.

Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent by genetic pathways and biochemical processes conserved in evolution.

The Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging.   Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death.

Here are the nine hallmarks of aging, accompanied by explanation notes:

1)  Genomic Instability

Genomic instability refers to the high frequency of mutations within the genome of a cellular lineage.  As DNA changes occur, failures accumulate and the DNA becomes less likely to fix itself.

2)  Telomere Attrition

Telomeres are the terminal caps of chromosomes that become shorter as individuals age. The leading hypothesis is that telomere attrition is due to inflammation, exposure to infectious agents, and other types of oxidative stress, which damage telomeres and impair their repair mechanisms.

3)  Epigenetic Alterations

The term epigenetics refers to heritable changes in gene expression that does not involve changes to the underlying DNA sequence; a change in phenotype without a change in genotype.

In additional to heritable changes, epigenetic change is influenced by several factors including age, the environment/lifestyle, and disease state.

4)  Loss of Proteostasis

Proteostasis relates to folding, trafficking and degradation of proteins present within and outside the cell.  Changes and accumulation of misfolded proteins is a factor in the aging process and is responsible for the onset of certain diseases (i.e. Alzheimer’s, Parkinson’s, Huntington’s and ALS diseases).  As many of the diseases associated with protein aggregation increase in frequency with age, it seems cells lose the ability to clear misfolded proteins and they then aggregate over time.

Small molecule agents have been shown to reduce protein aggregation.  In cell culture systems, resveratrol supplementation produced beneficial results against the accumulation of the amyloid-beta peptide, a main culprit in Alzheimer’s disease.

5)  Deregulated Nutrient Sensing  

Nutrient sensing is a cell’s ability to recognize and respond to fuel substrates such as glucose.

The level and type of fuel that is available to a cell will determine the type of enzymes it needs to express from its genome for utilization. Nutrients are a key regulator of tissue growth. As we age, the body becomes less efficient at absorbing certain nutrients and it automatically takes less nutrients to repair itself.

This is why exercise and consuming the right foods at regular intervals is essential.  To do this give your body the right nutrients by eating organic, natural foods, ensure you stay hydrated and take quality health supplements.

Although scientific evidence shows calorie restriction can increase lifespan, it also shows that calorie restriction for long periods of time is harmful.

6)  Mitochondrial Dysfunction

Mitochondrial is the enzyme that stimulates the cell to produce more energy and grow, which then increases the metabolic rate.  Cells require a lot of energy in order to function correctly.

In 2003, Doctors Baur and Sinclair at the Harvard University discovered resveratrol and found it improved mitochondrial function and protected against metabolic disease.  They also found resveratrol increased the lifespan of organisms and animal species by 20-40%.  In 2009, Christopher Paul Erdman found that resveratrol enriched mesenchymal stem cells that are traditionally adult stem cells found in the bone marrow.  Be sure to take liquid resveratrol via intraoral spray delivery as it is proven to be the most effective route of absorption for humans (250 times more effective in an intraoral spray delivery as this overcomes the “first past effect” that is associated with pills and capsules).

7)  Cellular Senescence

Cellular senescence is the phenomenon when healthy cells lose their ability to divide or replicate.  They reach what is known as the hayflick limit.  Adult stem cells are the master cells of the body (that are with us from the day we are born).  They are responsible for cellular rejuvenation, tissue and muscle repair and regeneration, and immune response throughout our lifetime. As long as the adult stem cells remain activated and keep dividing they maintain their ability of self-renewal and they continue to keep repairing.  However, as we age, the ability of one’s own adult stem cells to divide and self-renew is naturally programmed to occur more slowly, their release rates reduce and they also decrease in number.  Our adult stem cells therefore begin to lose their ability to repair tissues and our immune system becomes compromised, making us more susceptible to illness and disease.

8)  Stem Cell Exhaustion

There are consequences associated with the decrease and exhaustion of hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), satellite cells, and intestinal epithelial stem cells (IESCs).   Altered intercellular communication occurs and this is associated with aging.

Dr Burton Feinerman reported in 2009 in the Ethiopian Review, Health News Digest that approaches to treat stem cell aging in organs include (A) stimulate existing stem cells to increase in numbers (B) administer specific lines of stem cells to repair damaged tissue and introduce young healthy cells to the organ.   These approaches are now available through stem cell replacement treatments and stem cell supplements.

9)  Altered Intercellular Communication

Intercellular communication relates to the manner in which cells communicate with one another.  Cell signaling is part of a complex system of communication that governs basic cellular activities and coordinates cell actions.  Cell signaling errors are linked to degenerative and autoimmune diseases.

The four most common ways in which human cells communicate are:

  • Cell to Cell Contact
  • Proteins
  • Hormones
  • Electrical and Chemical Signals.  Electrical and chemical signals are responsible for communicating extremely complex messages between neurons or between neurons and muscles cells.

Hallmarks of Aging Functional Interconnections

 

This graph illustrates the nine hallmarks of aging as described in this Review. Reference: Cell Press.

This graph illustrates the nine hallmarks of aging as described in this Review. Reference: Cell Press.

To view this document in a printable format click here.  Hallmarks of Aging – Why Cell Health Is Everything.

References:
http://en.wikipedia.org
http://neuroscience.jhu.edu/rosss10-s17.pdf
http://www.glycotrainer.com/intercellular-communication/
http://www.ncbi.nlm.nih.gov/pubmed/23746838
http://www.sciencedirect.com/science/article/pii/S0092867413006454
http://www.whatisepigenetics.com/fundamentals/

Copyright ©2013 Stem Cell Worx. All Rights Reserved.   For Further Information on Cell Health visit: www.stemcellworx.com

 

New Blood Stem Cell Could Help Solve Platelet Shortage

Thursday, August 15th, 2013

platelets

A new type of bone marrow stem cell in mice that is primed to produce large numbers of vital blood-clotting platelets has been discovered.

Lack of platelets is a common side effect in cancer patients.

The breakthrough could lead to the development of new treatments to restore platelets in patients who have undergone chemotherapy or a bone marrow transplant.

A team funded by the Medical Research Council (MRC), and led by scientists at Oxford University’s MRC Weatherall Institute of Molecular Medicine, has reported the discovery in the journal Nature.

Blood cells are made by a small pool of stem cells in the bone marrow, which replenish the blood at a rate of millions of cells per second. These cells can copy themselves (self-renew) and give rise to all the different cell types that make up the blood system, including white and red blood cells, and platelets.

Platelets help the blood to clot by clumping together at the site of bleeding. Having too few platelets can result in excessive bleeding and is a common side effect in cancer patients, whose natural reservoir of platelets has been destroyed by the disease or by treatment. This can be life-threatening in the weeks immediately following chemotherapy or a bone marrow transplant as it takes time for blood stem cells to replenish platelets to safe levels.

Many patients who undergo these treatments are given platelet transfusions to protect them from bleeding. But donated platelets can only be stored for a few days and demand often outstrips supply. Researchers have therefore been looking for a way to rapidly and durably increase the production of platelets to reduce the risk of bleeding.

‘We used to think that there was just one type of blood stem cell that could self-renew and give rise to all the different cell types in the blood. But here we’ve identified a new type of stem cell that is very driven, at a molecular and functional level, towards making platelets,’ said Professor Sten Eirik Jacobsen of Oxford University’s MRC Weatherall Institute of Molecular Medicine who led the research with Claus Nerlov.

‘Now that we know these cells exist, we can start thinking about devising new strategies to enhance platelet output – either by generating and transplanting more of this type of cell into a recipient, or by somehow stimulating their own pool of stem cells to restore platelet levels more quickly. But first we need to see whether we can find the same cells in human tissue and understand more about how they are regulated.’

The researchers found that different subtypes of blood stem cell are organized into a hierarchy, with platelet-primed cells at the top. These platelet-primed cells are able to also replenish other stem cell types that mostly generate the vital blood cells of the immune system. Transplanting just one platelet-primed stem cell into mice that lacked their own bone marrow was enough to stably restore more than 10% of their platelets. Future studies by the group will focus on whether this can be achieved quickly enough to benefit patients in a clinical transplantation setting.

The research was partially carried out at the MRC Centre for Regenerative Medicine at the University of Edinburgh and the EMBL Mouse Biology Programme, Italy.

Reference:       http://www.healthcanal.com